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We set out to define patterns of gene expression during kidney
organogenesis by using high-density DNA array technology. Ex-
pression analysis of 8,740 rat genes revealed five discrete patterns
or groups of gene expression during nephrogenesis. Group 1
consisted of genes with very high expression in the early embry-
onic kidney, many with roles in protein translation and DNA
replication. Group 2 consisted of genes that peaked in midembryo-
genesis and contained many transcripts specifying proteins of the
extracellular matrix. Many additional transcripts allied with groups
1 and 2 had known or proposed roles in kidney development and
included LIM1, POD1, GFRA1, WT1, BCL2, Homeobox protein A11,
timeless, pleiotrophin, HGF, HNF3, BMP4, TGF-a, TGF-b2, IGF-II,
met, FGF7, BMP4, and ganglioside-GD3. Group 3 consisted of
transcripts that peaked in the neonatal period and contained a
number of retrotransposon RNAs. Group 4 contained genes that
steadily increased in relative expression levels throughout devel-
opment, including many genes involved in energy metabolism and
transport. Group 5 consisted of genes with relatively low levels of
expression throughout embryogenesis but with markedly higher
levels in the adult kidney; this group included a heterogeneous mix
of transporters, detoxification enzymes, and oxidative stress
genes. The data suggest that the embryonic kidney is committed to
cellular proliferation and morphogenesis early on, followed se-
quentially by extracellular matrix deposition and acquisition of
markers of terminal differentiation. The neonatal burst of retro-
transposon mRNA was unexpected and may play a role in a stress
response associated with birth. Custom analytical tools were de-
veloped including ‘‘The Equalizer’’ and ‘‘eBlot,’’ which contain
improved methods for data normalization, significance testing,
and data mining.

Organogenesis is the result of a complex interplay of prolif-
eration, cell-to-cell communication, inductive events, and

cellular movements. It is widely held that stable changes in the
state of the cell are accompanied by changes in gene expression
and that cellular states during development progress from less to
more differentiated, often in response to specific inductive
signals from nearby cells. Although very useful, these constructs
focus attention on the contribution of master regulatory genes
and specific morphogens. A broad based and unbiased view of
gene expression during mammalian organogenesis is lacking.

Advances in the technology for assaying RNA in a highly
parallel fashion, coupled with the completion of several genome
sequencing projects, make possible a complete description of
gene regulatory systems during development. Here, we define
the broad outlines of gene expression during kidney develop-
ment, an example of organogenesis that involves mesenchymal-
epithelial transformation, branching morphogenesis, and acqui-
sition of organ-specific markers of terminal differentiation (1, 2).
Of 8,740 genes, 873 were found to vary significantly (P , 0.0025)
during kidney development. These genes clustered into five clear
patterns or groups of gene expression, each of which was defined
by a unique ‘‘personality’’ characterized by cluster-member gene
function, tissue distribution, and embryonic expression. We have
devised custom software algorithms that were critical to the
analysis. Included are tools for data ‘‘equalization’’ by means of
a continuously variable normalization vectors and for the cre-

ation of array-error models that permit assignment of statistical
significance, as well as an electronic ‘‘eBlot’’ that uses informa-
tion in the publicly available databases.

Methods
RNA Preparation and Analysis. Pooled total RNA (5 mg) was
isolated from embryonic rats at gestational day 13 (e13, n 5 16),
e15 (n 5 8), e17 (n 5 4), e19 (n 5 2), newborn (n 5 2), 1 week
(n 5 2), and nonpregnant adult (n 5 2). Dissected tissues were
immediately frozen in liquid nitrogen before RNA isolation.
Total RNA was purified by using Strataprep Micro and Miniprep
Total RNA isolation kits (Stratagene), according to the manu-
facturer’s protocol. Reverse transcription, second-strand synthe-
sis, and probe generation were all accomplished by the standard
Affymetrix protocol (Affymetrix, Santa Clara, CA). In like
fashion, Rat Genome U34A GeneChips (Affymetrix) were
hybridized, washed, and scanned according to the standard
Affymetrix protocol.

Data Analysis. Array data were globally normalized by using ‘‘The
Equalizer,’’ an application for global data normalization written
in VISUAL BASIC 6 (Microsoft). Additional analysis was per-
formed with custom add-in applications for Microsoft EXCEL,
SYSTAT 9.0 (SPSS, Chicago), GENESPRING (Silicon Genetics, San
Carlos, CA), and a stand-alone implementation of the BLAST
family of programs (NCBI, Washington, DC; ref. 3). Analytical
methods are described in detail in the figure legends.

Data equalization. Briefly, before the normalization algorithm,
here termed ‘‘equalization,’’ GeneChip expression data in many
cases displayed marked systematic deviation from linearity in
two-dimensional orthogonal projections of the original n-
dimensional data matrix. The Equalizer was used to identify a
group of points with similar rank order of signal intensity in any
two gene expression lists; the group was then used to generate
a continuously variable normalization vector that eliminated the
systematic deviation (see Fig. 1 legend).

Statistical modeling. The scatter (log ratio) in the data was
expressed as a function of baseline expression in identical
replicate samples (Fig. 2). Each position in the scatter model was
associated with a standard score Z which represented the
deviation from identical expression in the context of baseline
expression. Each pairwise comparison of experimental obser-
vations yielded a Z value. Multiple observations could be
combined by averaging Zs, which could in turn be associated with
a P value (see Fig. 2 legend). Array data and software are
available at http:yyorganogenesis.ucsd.eduy.

Results
Data Equalization. DNA array experiments generate a data matrix
in n-dimensional space (4). Such a data distribution is charac-

Abbreviations: En, embryonic days n from gestation; EST, expressed sequences tag; ECM,
extracellular matrix.
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terized by a central tendency or ‘‘line of identity’’ corresponding
to genes with no change in expression in any condition. In the
case that the central tendency is linear and characterized by a
slope of 1, direct comparisons of raw numerical values yield valid
results. Owing to variations in the hybridization and scanning
process, the idealized case is essentially never realized. Various
strategies, such as normalization and scaling, have been devel-
oped to compensate for this shortcoming. Such manipulations,
based on average probe intensities and similar measures, involve
simple linear transformations of the data matrix. Unfortunately,
the central line of identity is also typically characterized by some
degree of nonlinearity, particularly at higher levels of expression
(Fig. 1 A). The curved nature of the data distribution leads
directly to an apparent increase in scatter at high levels of

baseline expression, which, in previous work (though not spe-
cifically noted), has required the use of terms in statistical
models that give great weight to the precision of any given pair
of measurements (5, 6). To favor purely directional tendencies
as opposed to precision, we have previously expressed the
measure of differential expression as a vector quantity directed
orthogonally away from the central tendency (4). The common,
precision-based methods tend to overlook genes in which direc-
tional changes are identical but where absolute values of change
are variable. However, our previous notion of differential ex-
pression as a vector in n-dimensional space rapidly becomes
computationally expensive, particularly in the setting of curvi-
linear relationships. A data matrix in which the line of identity
has been rendered linear permits a direct comparison of expres-
sion values and permits the use of statistical models that favor
purely directional changes over the variations in absolute value
(Fig. 1B).

Statistical Model. Statistical algorithms employing t tests treat
DNA array experiments as thousands of parallel experiments.
Any such analysis performed thousands of times is subject to a
significant multiple observation bias and fails to take into
account the context of one measurement among many of thou-

Fig. 1. Data equalization. (A) Before being subjected to the normalization
algorithm (here termed equalization), GeneChip expression data in many
cases displayed systematic deviation from linearity in two-dimensional or-
thogonal projections of the original n-dimensional data matrix. Genes with
expression values near the readily apparent central tendency are invariant in
the two comparison conditions, but may display raw signals that deviate
significantly. The datum in the upper right corner is representative of a large
number of points that, in this example, display an '60% systematic shift
toward higher value along the y axis as compared with the x axis condition,
despite their clear association with the central trend of the data. In the
example, The Equalizer has identified a group of points with identical rank
order of signal intensity (window of 65) in the two gene expression lists (red
points) and applied a locally weighted nonlinear regression ‘‘smoother’’ to
generate a best-fit description of the central trend of the data. (B) The best-fit
line was then used as a normalization vector, which, when applied to the data
matrix, resulted in linearized data with a slope very near to 1. Note that before
equalization, a description of the data by linear regression techniques yielded
different answers depending on which variable was considered dependent or
independent [unequal root mean square error (rmse)]. The Equalizer also
provides for shifting of the data to positive values to allow for subsequent log
transformations. All gene intensities were then shifted to the positive by an
amount corresponding to the 1.5th percentile (a user-defined value) gene
intensity value. The '1.5% of genes with shifted values less than noise were
then set to the noise value.

Fig. 2. Scatter model. (A) The scatter in the data was expressed as a function
of baseline expression in identical replicate samples. The scatter was described
by the log ratio of two observations of the same gene, whereas baseline
expression was described by the log of the minimum value observation.
Scatter increased with decreasing levels of baseline expression and was easily
modeled. More than 60,000 replicate measurements were distributed in the
model and were bounded by an equation of the form Ae(Bx) 1 Cx 1 D, where
A 5 5, B 5 20.65, C 5 0.015, and D 5 0. A score, termed Z, could then be
calculated for each position in the error model. Z was normally distributed,
and the P value associated with a given Z could be calculated as,

P 5 1 2 erf$@Z 2 Zm#y@Î2 3 Zs#%

where erf is the error function, Zm 5 mean Z, Zs 5 standard deviation of Z from
replicate observations. Each time point in kidney development was repre-
sented by two GeneChips, resulting in four possible pairwise comparisons. The
multiple observations were combined into a summary P value by averaging
signed Zs. A P value of 0.0025 corresponded to approximately the 1,000 most
significantly changing genes (n 5 980). The list was further reduced to 873 by
excluding all genes labeled ‘‘absent’’ in all arrays, according to the Affymetrix
algorithm. (B) Many genes were determined to be differentially expressed in
a comparison of e13 with adult rat kidney RNA (red points). Several genes
(outlying blue points) were not considered significant despite their apparent
outlier status gained as a result of highly variable results for the given gene.
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sands of similar measurements. We and others have modeled the
variability in observations as a function of baseline expression in
replicate samples (5). After appropriate equalization of the data,
the increase in scatter observed at lower levels of baseline
expression may be modeled by simple exponential equations
(Fig. 2 A). The error model created on replicate samples is then
applied to experimental observations, and confidence values
based on position in the error model are calculated from the
error function. Multiple observations were readily combined
into summary P values. A comparison matrix representing each
possible pairwise comparison between different developmental
days was analyzed. Data points that had no single summary P
value more significant than P 5 0.0025 represented those genes
lying relatively close (in the context of baseline expression) to the
central tendency in all dimensions and were excluded from
further analysis (Fig. 2B).

Clustering. The stringent filtering of the data for significant and
consistent changes greatly facilitated identification of biologi-
cally relevant gene clusters. Those genes in which at least a single
pairwise comparison yielded a significant difference could, in
principal, constitute a heterogeneous mix of genes in which a
single spurious result interrupted an otherwise housekeeping
pattern. Likewise, it was formally possible that many of the genes
would display ‘‘zigzag’’ patterns that resulted from multiple
spurious measurements and that were nonsensical in a biological
sense. Therefore, we applied hierarchical clustering to the
filtered data to visualize patterns of gene expression globally
(Fig. 3). The clustering algorithm grouped the embryonic gene
expression vectors separately from the neonatal group, both of
which were grouped separately from the adult.

Clustering on the gene axis produced five major groups that
corresponded to groups also identified through k-means clus-
tering. Each cluster was characterized by an idealized gene
expression vector (Fig. 4). The groups were named 1 through 5
based on the timing of their peak expression during develop-
ment. Notably lacking were patterns inconsistent with a role in
development or that likely reflected spurious data. Thus, group

1 consisted of genes that had very high relative levels of
expression in early development. Group 2 consisted of genes that
were relatively low initially but that peaked and declined during
prenatal life. Group 3 was composed of genes that peaked in the
neonatal period. Group 4 consisted of genes that had a relatively
steady increase in expression throughout development. Finally,
group 5 consisted of genes that had low levels of expression
throughout development but that were significantly up-regulated
in the adult. The canonical clusters identified here make bio-
logical sense, both in terms of their respective shapes and in
terms of function of their member genes and previously observed
tissue distribution (see below).

eBlot Database of Gene Functions and Distribution. A complete
annotation of gene function, cellular location, and other infor-
mation is lacking for genes present in the arrays. Moreover, there
is not yet a common gene terminology in place to allow
comparisons of curated gene information across multiple data-
bases. Despite the lack of common terminology, one field—the
sequence—is present, or referenced, in most databases and is
insensitive to minor ‘‘spelling’’ changes between database or
species. Therefore, we created a database (Fig. 5), termed eBlot,
that links array target sequences with gene sequencesyaccessions
present in public databases (7–10). Briefly, the ‘‘target se-
quences’’ associated with each probe, which may have changed
in identity or completeness, were updated and, in most cases,
completed through automated BLAST searches against Unigene
and against the nonredundant GenBank nucleotide database.
This database consolidation procedure yielded curated mRNA
sequences for most probes, updated accession numbers, and
identifications of what previously were unknown expressed
sequences tag (EST) sequences. The updated sequence fields
were then linked to Gene Ontology (GO) records and ontologies
through the sequence field via BLAST comparison (3, 8).

The five canonical gene expression patterns varied consider-
ably with respect to the general gene functions of cluster
members (Fig. 6; Table 1). Group 1 (n 5 323), which is
significantly up-regulated in early embryogenesis, contained a
preponderance of genes that function in protein synthesis (n 5
46), DNA replication or structure (n 5 36), and RNA synthesis
or processing (n 5 48). This group also contained a number of
genes with previously recognized roles in organogenesis. Among
the genes of group 2 (n 5 70), which peaked in mid-late
embryogenesis, were genes for structural proteins of the extra-
cellular matrix (ECM) (n 5 19) or cytoskeleton (n 5 6), as well

Fig. 3. Hierarchical clustering. There were 873 genes identified as chang-
ing significantly at some point in kidney development. These 873 genes
were clustered [by using the hierarchical clustering algorithm, GENESPRING

(Silicon Genetics)] in two dimensions according to their gene expression
and experimental vectors in Euclidian space after compressing the equal-
ized data to a target maximum value of 3. Numbers at the bottom indicate
group numbers derived from k-means clustering. Group 1 genes are up-
regulated (red) in the early embryonic period and decrease thereafter.
Group 2 genes rise to a mid-late embryonic peak. Group 3 genes peak in the
neonatal period. Group 4 genes rise somewhat linearly throughout devel-
opment. Group 5 genes display a distinct peak in the adult vs. all earlier
times. 13, 15, 17, 19, embryonic days; N, newborn; W, 1 week old; A, adult.

Fig. 4. Temporal gene expression profiles during kidney development. Data
are expressed as the mean at each time for clusters of genes as defined by
k-means clustering (1–5). The distribution of individual profiles is also shown
for the most heterogeneous group (2, all). Identities of representative genes
are shown in Table 1. 13, 15, 17, 19, embryonic days; N, newborn; W, 1 week
old; A, adult.

Stuart et al. PNAS u May 8, 2001 u vol. 98 u no. 10 u 5651

D
EV

EL
O

PM
EN

TA
L

BI
O

LO
G

Y



as genes with previously identified morphogenetic roles. Group
3 genes (n 5 48) also contained genes for ECM proteins (6) but
was most notably populated by RNA species specifying retro-
transposons (n 5 15). Group 4 genes (n 5 262) increased in a
relatively linear fashion (relative to many other housekeeping
genes) and included most prominently genes specifying proteins
involved in energy production (n 5 65) and transport (n 5 29).
Group 5 genes (n 5 172), which also included genes involved in
transport (n 5 15), shared a similar temporal pattern of devel-
opmental expression with those of group 4 but exhibited a
significant bias toward relatively high levels of expression only in
the adult. The group 5 cluster of genes also included genes
involved in detoxification (n 5 19), immune recognition (n 5
20), amino acid catabolism (n 5 12), and defense against
oxidative stress (n 5 15).

A number of genes with known and suspected morphogenetic
roles in kidney development and elsewhere were observed to be
differentially regulated. Most fell into group 1 and included
IGF-II, X17012; pleiotrophin, NMo017066.1; activin type IIB R,
M87067; ganglioside GD3, NMo012811.1; transforming growth
factor (TGF)-b2, M96643; frizzled, L02530; and platelet derived
growth factor (PDGF)-R, NMo011058. Group 2 included jagged,
L38483; LIM1, S71523; POD1, AF061752,NMo011545; and
IGFBP2, M91595. Group 4 contained hepatocyte growth factor
(HGF)-activator-inhibitor, AF099020, and group 5 contained
epidermal growth factor (EGF), U04842, and EGFR, X12748. In
addition, a number of known morphogenetic effectors displayed
trends that allied them with a particular group but that were not
included by the present stringent threshold. Among these effec-
tors were, in group 1, Timeless, retinoic acid receptor (RAR)-a,
RAR-b, bcl2, Homeobox protein A11, GFRA1, and Wilm’s
tumor (WT)1; in group 2, HGF, HNF-3, BMP4, TGF-a, met,
fibroblast growth factor (FGF)7, and BMP4; and in group 4,
BMP7. Thus, the array data revealed important changes in expres-
sion of several transcription factors, secreted factors, and receptors
with putative roles in kidney development; these genes generally fell
into groups 1 and 2. A few important morphoregulatory molecules
such as Pax2 and Emx2 were not present on the arrays.

The tissue distribution of genes provides important functional
clues. A wealth of information exists in the printed record
regarding tissue distribution but remains inaccessible in any
systematic way by electronic means. Nevertheless, the EST
database (http:yywww.ncbi.nlm.nih.govydbESTy), consisting of

more than 6 million RNA sequences from '7,000 libraries, by
definition, contains accessible information for tissue distribution
and, in many cases, for developmental stage. The database also
distinguishes between cancer and normal tissue (11). Therefore,
we parsed the EST database for human, mouse, and rat se-
quences and generated a custom database associating the tissue
source, developmental stage, and derivation from tumorynormal
tissue (information available for each library of origin) with each
EST sequence (Fig. 5). This database was associated with the
GeneChip sequences, as was done for functional annotations.

The results summarize the association of the gene clusters with
tissues of origin in the EST database (Fig. 7). Thus, member
genes of group 5 (adult group) were strikingly more common in
source libraries from tissues characterized by the presence of
branching ductal epithelial structures such as kidney, lung, liver,
and pancreas. This finding is in marked contrast to the other
groups (1–3) in which the member genes had more heteroge-
neous tissue associations. Group 4, like group 5, was character-
ized by transport proteins, but the tissue associations as a whole
were less biased toward epithelial tissues. In addition, many EST
source library descriptions include information as to the devel-
opmental stage of the source tissue and its derivation from
tumorynormal tissue. A striking tendency toward embryonic
tissue association was found for the genes of group 1; group 2,
characterized by ECM and morphogenetic genes, was most
closely associated with tumor tissues (not shown).

The database (Fig. 5) identifies the intersection of the previ-
ous analytical efforts for the efficient prioritization of genes for
additional studies. It is possible, for instance, to select a subset

Fig. 6. Functional associations of gene clusters. Gene clusters varied remark-
ably in terms of major functional classifications of component genes. Key
(Lower right) indicates major gene functional classifications: B, biosynthetic;
CA, cell adhesion; C, catabolism-small molecules; CC, cell cycle; CS, cytoskel-
etal; DE, defense; D, DNA structure or replication; E, extracellular matrix; ED,
endocytosis; EN, energy metabolism; H, homeostasis of the organism; M,
morphogenetic; P, protein synthesis or processing; R, RNA synthesis or pro-
cessing; HS, heat-shock proteins; DT, detoxification of exogenous substances;
RD, protection against oxidative stress; T, transport; RT, retrotransposon; U,
unknown function. The icons preceding the group names were derived from
Fig. 4 and display the associated temporal expression profile. Group 1 ex-
pressed earlier in nephrogenesis was most notable for genes involved in DNA
replication (D), RNA production (R), protein synthesis (P), and morphogenesis
(M), consistent with an actively proliferating tissue. Group 2 (which peaked in
midnephrogenesis) was most notable for genes of the extracellular matrix (E)
as well as morphogenetic genes (M). Group 3 (with a peak in neonatal life) was
dominated by retrotransposon transcripts (RT). Group 4 was most notable for
transport (T) and energy metabolism (EN) related genes. Group 5 genes
(significantly up-regulated in the adult vs. all previous times) was more
heterogeneous and included genes specifying catabolic enzymes (C), defense
and immune recognition (DE), homeostasis of the organism as a whole (H),
detoxification (DT), oxidative stress (RD), and transport (T).

Fig. 5. eBlot database schema. The Affymetrix target sequences were
updated by comparison to Unigene sequences and associated by sequence
similarity with entries in publicly available databases. Individually curated
gene function information was derived for genes without high scoring
matches in Gene Ontology Consortium-linked databases. SGD, Saccharomyces
Genome Database; FB, Flybase; MGI, Mouse Genome Informatics; dbEST, EST
database (National Center for Biotechnology Information); GO, Gene Ontol-
ogy Consortium, DEV, developmental stage; ID, identifier; SEQ, sequence; LIB,
library; CA, cancer.
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of genes belonging to groups 1 or 2 (early in development, Figs.
3 and 4), with unknown function (Fig. 6), which have a high
frequency of association with kidney andyor embryonic tissue

sources andyor tumor tissue. Had their developmental roles as
yet been unsuspected (functional classification 5 unknown), this
strategy would have identified known developmental genes such
as LIM1 and POD1. In fact, a small number of such candidate
genes were identified.

Discussion
We have described the broad outlines of gene expression during
organogenesis of the kidney. The data frame the main themes in
kidney development, as evidenced by five characteristic clusters
of significantly and consistently differentially regulated genes:
cellular proliferation and morphogenesis (group 1), followed by
continued morphogenesis and ECM production (group 2), and
terminal differentiation and ability to respond to oxidative and
osmotic stress (groups 4 and 5). We also have uncovered a
non-germ-line retrotransposon transcriptional burst that may be
a response to neonatal cellular stress (group 3). The data are the
result of our system of normalization, error modeling, and
statistical analysis aimed at a precise characterization of DNA
array performance. The gene clusters identified were readily
interpretable in biological and temporal terms and, to the degree
that such genes were present in the arrays, included a number of
recognized master regulatory or morphogenetic genes such as
LIM1, POD1, WT1, homeobox gene A11, and GFRA1. In
addition, a number of genes with unknown function were
identified in all groups.

A picture emerges that is somewhat different in emphasis than
much of the work focusing on knockout experiments. For
example, early in kidney development, the work of the kidney
seems to be largely to grow. A sizeable fraction of genes
up-regulated in this period (group 1) are devoted to chromo-
some, nucleolus, and ribosome production (Table 1). Also, as
mentioned above, early kidney development is the period when
a number of likely morphogenetic effector genes are expressed.
Expression of morphoregulatory genes is a theme that continues

Fig. 7. Tissue distributionyassociation of cluster member genes in the EST
database. Group member genes were associated with EST database entries by
sequence similarity and the tissue associations were summarized as in Fig. 6.
When kidney-, colon-, lung-, pancreas-, and liver-derived genes were found
homologous (BLAST bit score $100) to any of the 873 significantly changed
genes, they tended to come from group 4 and, particularly, group 5. The
results provide independent evidence for the validity of the canonical clusters;
genes that appeared late in kidney development (groups 4 and 5) were
associated with EST source libraries consisting of branching ductal epithelial
tissue. Interestingly, group 3 (dominated by retrotransposon RNA species) was
more frequently associated with adrenal and islet tissues. Abbreviations: K,
kidney; CO, colon; LU, lung; PN, pancreas; LI, liver; SN, skin; B, brain, ER, ear;
EY, eye; T, testis; OV, ovary; BM, bone marrow; SP, spleen; AD, adrenal; IS,
islets; H, heart; SK, skeletal muscle; EN, endothelium.

Table 1. Representative group members

Group 1: Translation and ribosomal proteins
(eif-2, J02646); (eif-2, L10652); (eiF3.9, AA875205); (eiF3s7, NMo018749); (factor 2C2, H31692); (ER ribosomal binding protein p34, D13623); (rp
L10a, X93352); (rp L12, X53504); (rp L13, X78327); (rp L15, X78167); (rp L17, X58389); (rp L18a, X14181); (rp L21, X15216); (rp L22, X60212); (rp
L27, X07424); (rp L27a, X52733); (rp L29, X68283); (rp L3, X62166); (rp L35a, X05705); (rp L41, X82550); (rp L6, X87107); (rp L8, X62145); (rp S10,
X13549); (rp S11, AB028894); (rp S15, NMo017151); (rp S19, X51707); (rp S24, M89646); (rp S3, X51536); (rp S6, M29358); (rp S7, X53377); (rp S9,
X66370)

Group 2: ECM related proteins
(Agrin, M64780); (COL1A1, Z78279, M27207, U75405); (COL3A1, M21354, X70369); (COL5A2, AJ224880); (Decorin, X59859); (FN, L00191,
U82612, X05834); (Follistatin, U06864); (Gel-A, U65656); (osteonectin, Y13714, U75929); (gelatinase-A, U65656)

Group 3: Transposons
(LINE3 cds 1, M13100#1); (LINE3 cds 2, M13100#2); (LINE3 cds 3, M13100#3); (LINE3 cds 4, M13100#4); (LINE3 cds 5, M13100#5); (LINE3 cds 6,
M13100#6); (LINE4, M13101); (L1 transposon, U83119, X61295); (2.4kb transposon cds 1, X05472#1); (2.4kb transposon cds 2, X05472#2); (2.4kb
transposon cds 3, X05472#3); (L1 Rn, X07686); (LINE, X53581)

Group 4: Energy related
(aldolase, AA892395, X02284, X02291); (fructose-1,6-bisphosphatase, M86240); (hexokinase, AA858607); (lactate DH, U07181);
(phosphoenolpyruvate carboxykinase, K03243); (argininosuccinate synthetase, X12459); (dihydrolipoamide succinyltransferase, D90401);
(glutamate DH, AI179613, AI233216); (malate DH, AF093773); (methylmalonate semialdehyde DH, M93401); (NADP Isocitrate DH, AA892314);
(pyruvate DH-1, AA799598, Z12158); (pyruvate DH-2, U10357); (ADPyATP translocase, D12771); (COX Va, X15030); (CYT B, J01436); (CYT B5,
AF007107, AA945054); (CYT B558, U18729); (CYT C OX, L48209); (CYT C OX-II, AI010292); (DICARB, AJ223355); (H1ATPase, D10874, D13127);
(NADH-Q oxidoreductase B22, AI171542); (NADH-Q reductase, AI009390, S46798); (NADH-Q oxidoreductase CI, AI176491); (SUCCINATE-Q
oxidoreductase, AA800250)

Group 5: Transporters
(Na channel b1, M91808); (cation transporter, X78855); (ROMK2b, S78154); (K channel, D86039); (Kir5 channel, AF249676); (CHIP28, X67948);
(Aquaporin, D13906); (NayHCO3 exchanger, AF004017); (integral membrane transport protein 1, AF028739); (SDCT sodium-dicarboxylate
cotransporter 1, AF058714); (UST1r integral membrane transport protein, Y09945); (RATSTRAP Stimulates Transport of Amino Acids Protein,
M80804); (ROSIT renal osmotic stress induced transporter, U12973); (OCT1a organic cation transporter, U76379); (LSTP liver-specific transport
protein, L27651)

In each citation in parentheses, the first item is the common name and the second item is the accession number. rp, ribosomal protein; DH, dehydrogenase;
COX, cytochrome oxidase; CYT, cytochrome.
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temporally into the period of expression of group 2 genes. As the
period of cellular proliferation wanes, a burst of ECM and
ECM-modifying genes are expressed, suggesting that the newly
generated cells secondarily invest a great deal of their resources
modifying the local environment. ECM-modifying proteins such
as MT-MMP were present in group 1, and group 2 genes are also
present in the early embryo (and only peak later); these facts,
taken together, are consistent with the continuing importance of
ECM deposition and modification, which begins very early and
peaks in midnephrogenesis (12–15).

The gene clusters were distinct with respect to member gene
functions, none more so than those up-regulated solely in the
neonatal period (group 3). It was somewhat surprising to find
that group 3 was dominated by members of the LINE family of
retrotransposons. In one case, probe sets are present targeting
six separate ORFs from the long interspersed repetitive DNA
sequence LINE3 (16). Each separate RNA species was not only
differentially regulated but clustered together in group 3, indi-
cating that the relevant RNA might be coordinately regulated;
indeed, these RNA were originally found in rat liver as a single
transcript (16). The precise function of LINE sequences in
mammalian cells remains elusive, although their germ-line con-
tributions to the evolution of telomerase and antibody VDJ
recombination are well known (17). It has been suggested that
high levels of otherwise inactive transposon RNA serve to
saturate and inactivate dsRNA-induced protein kinase (PKR;
refs. 18–20) and thus maintain protein translation. PKR would
otherwise interrupt translation during cellular stress. Retro-
transposon transcription has also been shown to increase in
insect cells under stress (21). The role of retrotransposon
transcription in the neonatal period is unknown, but it provides
an example of a set of new hypotheses generated through broad
surveys of gene expression. Group 3 also contained genes with
known roles in cytoprotection, particularly those involved in
dealing with oxidative stress. This group includes glutathione
peroxidase, NMo008161; glutathione S-transferase Yc2, S82820;
and thioredoxin interacting factor, U30789. The development of
glutathione- and metallothionein-related genes is a theme that
continues through group 4 and reaches maximal levels in adult-
hood (group 5).

After cellular proliferation and somewhat concurrent with
ECM deposition, the kidney up-regulates a group of transport
proteins (group 4). That many genes with roles in energy
production are coordinately up-regulated suggests that addi-

tional energy is required to subserve transport processes. An-
other group of transport proteins present in group 5 were
up-regulated only after birth and, indeed, after the neonatal
period. The transporters present in groups 4 and 5 were similar
in character with one notable difference: group 4 (linearly
increasing throughout development) alone contained subunits of
the Na,K-ATPase, in keeping with its general role in cell volume
regulation and many secondary transport processes. Both groups
4 and 5 contained examples of water channels (Aquaporins 1, 3,
5, and 7), inorganic (NaK2Cl, ROMK2y2b, CLCK2, NHE2, and
NaPi-2-g), and organic substance transporters (NKTyOAT1,
GLUT5, SGLT2, and CD98). Notably, group 5 (adult) contained
ROSIT (renal osmotic stress-induced NaCl organic solute co-
transporter), suggesting that the adult kidney is subject to more
osmotic stimulus to transporter repertoire than are embryonic or
preweaning, neonatal kidneys (22). In concert with the increase
in transporter expression in groups 4 and 5, increases in a number
of enzymes involved in the catabolism of peptides and amino
acids were observed; included were meprin, dipeptidyl pepti-
dases 1 and 4, cathepsins D, H, and L, proline oxidase, branched
chain keto acid dehydrogenase E1, and several kynurenine-
related enzymes in the tryptophan degradative pathway leading
to NADyNADP cofactor synthesis.

Efficient prioritization of these genes, particularly those in
group 1, will likely be facilitated by broad surveys of gene
expression in in vitro models of organogenesis in which specific
cell types may be analyzed in isolation, and in an inductive
context where specific aspects of organogenesis (branching,
epithelialization, and differentiation) may be observed (23,
24). Future array analyses will provide ever more discriminat-
ing power and allow finer dissection of subtle changes in gene
expression. The normalization strategy described here will
facilitate the ongoing development and interpretation of
a continuously updated developmental database (http:yy
organogenesis.ucsd.eduy).
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